Kamis, 03 Desember 2009

Gerak Harmonik Sederhana

Gerak harmonik sederhana

Gerak Harmonik Sederhana (GHS) adalah gerak periodik dengan lintasan yang ditempuh selalu sama (tetap). Gerak Harmonik Sederhana mempunyai persamaan gerak dalam bentuk sinusoidal dan digunakan untuk menganalisis suatu gerak periodik tertentu. Gerak periodik adalah gerak berulang atau berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu :

* Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U, gerak horizontal / vertikal dari pegas, dan sebagainya.
* Gerak Harmonik Sederhana (GHS) Angular, misalnya gerak bandul/ bandul fisis, osilasi ayunan torsi, dan sebagainya.

Beberapa Contoh Gerak Harmonik

* Gerak harmonik pada bandul: Sebuah bandul adalah massa (m) yang digantungkan pada salah satu ujung tali dengan panjang l dan membuat simpangan dengan sudut kecil. Gaya yang menyebabkan bandul ke posisi kesetimbangan dinamakan gaya pemulih yaitu dan panjang busur adalah Kesetimbangan gayanya. Bila amplitudo getaran tidak kecil namun tidak harmonik sederhana sehingga periode mengalami ketergantungan pada amplitudo dan dinyatakan dalam amplitudo sudut
* Gerak harmonik pada pegas: Sistem pegas adalah sebuah pegas dengan konstanta pegas (k) dan diberi massa pada ujungnya dan diberi simpangan sehingga membentuk gerak harmonik. Gaya yang berpengaruh pada sistem pegas adalah gaya Hooke




Simpangan getaran


I. GETARAN1. Pengertian Getaran
Getaran adalah gerak bolak-balik atau gerak periodik disekitar titik tertentu secara periodik.

Gerak Periodik adalah suatu getaran atau gerakan yang dilakukan benda secara bolak-balik melalui jalan tertentu yang kembali lagi ke tiap kedudukan dan kecepatan setelah selang waktu tertentu.

Simpangan adalah jarak antara kedudukan benda yang bergetar pada suatu saat sampai kembali pada kedudukan seimbangnya.

Amplitudo adalah simpangan maksimum yang dilakukan pada peristiwa getaran.

Perioda adalah waktu yang diperlukan untuk melakukan satu kali getaran penuh.

Frekuensi adalah banyaknya getaran penuh yang dapat dilakukan dalam waktu satu detik.

2. Ayunan Sederhana
Ayunan sederhana atau disebut bandul melakukan gerakan bolak balik sepanjang busur AB.
Waktu yang diperlukan oleh benda untuk bergerak dari titik A ke titik A lagi disebut Satu Perioda.
Sedangkan banyaknya getaran atau gerak bolak-balik yang dapat dilakukan dalam waktu satu detik disebut Frekuensi.
Frekuensi yang dihasilkan bandul disebut Frekuensi Alamiah.
Frekuensi Alamiah adalah frekuensi yang ditimbulkan dari ayunan tanpa adanya pengaruh luar.




Untuk Mengetahui besarnya gaya yang mempengaruhi gerak ayunan dapat digunakan persamaan berikut ini :

F= m g sinѲ Atau F = m.g/l * x

Dimana :

F : Gaya (N)
m : Massa benda (Kg)
g : Percepatan gravitasi (ms-2)
θ : Sudut simpangan (…o)
l : Panjang tali (m)
x : Simpangan getar (m)

Simpangan getar (A) dapat diketahui besarnya melalui persamaan sebagai berikut :
A= l sinѲ
Dimana :


A : Simpangan getar (Amplitudo) (m)
θ : Sudut deviasi (…o)
l : Panjang tali (m)

Sedangkan perioda getaran pada ayunan sederhana dapat diketahui melalui persamaan sebagai berikut :
Dimana :

T= 1/f

T : Perioda getaran (S)
phi : 3,14 ( 22/7)
l : Panjang tali (m)
g : Percepatan gravitasi (ms-2)

Frekuensi getaran dapat dicari dengan menggunakan persamaan sebagai berikut :

f=1/T


Dimana :
f : Frekuensi getaran (Hz)
phi : 3,14 (22/7)
g : Percepatan gravitasi (ms-2)
l : Panjang tali (m)
T : Periode getaran (s)

SOAL

Sebuah bandul memiliki massa 100 gr dengan panjang tali 40 cm. Apabila percepatan gravitasi bumi 10 ms-2 dan bandul tersebut diberi sudut simpangan sebesar 10o. Tentukanlah amplitudo getaran dan gaya pada saat simpangan maksimum serta perioda getarannya!


3. Pegas

Getaran pada pegas memiliki frekuensi alamiah sendiri. Waktu yang diperlukan oleh benda untuk bergerak dari titik A kembali lagi ke titik A lagi disebut satu perioda dimana besarnya tergantung pada massa beban dan konstanta gaya pegas.


Besarnya gaya yang menyebabkan getaran dapat di ketahui melalui persamaan sebagai berikut :
F=-k.x
Dimana :

F : Gaya (N)

k : Konstanta gaya pegas (N/m)

x : Simpangan (m)

Konstanta gaya pegas dapat diketahui melalui persamaan sebagai berikut :
k= m.w²
Dimana :
k : Konstanta pegas (N/m)
m : Massa benda (Kg)
ω : Kecepatan sudut dari gerak pegas


SOAL
Sebuah pegas dengan tetapan gaya pegas sebesar 50 N/m dengan massa beban sebesar 50 gr. Dari keadaan setimbangannya pegas ditarik dengan gaya 2N. Tentukanlah simpangan maksimu, periode getarannya dan frekuensi getarannya


4. Hukum Kekekalan Energi Mekanik Pada Getaran

Besarnya energi mekanik dari suatu benda yang bergerak secara periodik adalah tetap.

Energi mekanik adalah jumlah dari energi kinetik dan energi potensial.

Di dalam setiap getaran energi potensial dan energi kinetik besarnya selalu berubah-ubah tetapi memiliki jumlah yang tetap.

Besarnya energi potensial dari benda yang bergetar secara periodik dapat diketahui melalui persamaan sebagai berikut :
Ep= 1/2 k y²

Dimana :
Ep : Energi Potensial
k : Konstanta gaya pegas
y : Simapangan getaran

Percepatan Getar

Persamaan percepatan didapat dari turunan pertama persamaan kecepatan dari suatu gerak harmonik.

ay=dy/dt

=-(4π2)/T2 A sin⁡ (2π/T) t,tanpa posisi awal

=- (4π2)/T2 A sin⁡ ( 2π/T) t+ θ0),dengan posisi awal θ0

'Persamaan tersebut dapat pula disederhanakan menjad'i

ay= (-2π/T)y= - ω y

'

Tanda minus ( - ) menyatakan arah dari percepatan berlawanan dengan arah simpangan, Kedua persamaan diatas (persamaan kecepatan dan percepatan) tidak kita turunkan disini ,
Energy pada gerak harmonic sederhana terdiri atas energy potensial dan energy kinetik. Dengan demikian energi total dari gerak harmonik sederhana merupakan jumlah dari energi potensial dan energy kinetiknya.

Ep = 1/2 k y2 dengan k= (4π2 m)/T2 dan y=A sin⁡θ

Ek = 1/2 mvy2 dengan vy= 2π/T A cos⁡θ

ET =Ep+Ek

ET = 1/2 k A2

'Keterangan:
A = amplitude (m)
T = Periode (s)
K = konstanta pegas (N/m)
Contoh soal:
Sebuah partikel melakukan gerak harmonic sederhana dengan frekuensi 5 Hz. Jika simpangan yang dapat ditempuh partikel itu pada saat t = 2 sekon adalah 20 cm, tentukanlah percepatan getar partikel pada saat itu!
Penyelesaian
'Diketahui:
f = 5 Hz
t = 2 sekon
y = 20 cm
a = - ω2.y=(2πf)2.y= - (2.π.5)2.20
= -2000 πcm/s2 = - 20 π m/s2

Tidak ada komentar:

Poskan Komentar